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Axial dispersion of red blood cells in microchannels
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Red blood cells (RBCs) flowing in a microchannel undergo dispersion in the flow
direction due to the nonuniform velocity profile while transverse migration due to flow-
induced deformations of cells combined with the presence of walls and a parabolic velocity
profile tends to focus them along the center line. This results in a dispersion of RBC transit
times through a capillary that is directly related to their transverse migration properties. By
analogy with the Taylor-Aris problem, we present an experimental method to characterise
this phenomenon by injecting pulses of dilute suspensions of red blood cells and measuring
the evolution of their length along the channel, and varying mechanical parameters such as
RBC deformability and fluid viscosity. A direct comparison of experimental results with a
model that incorporates longitudinal advection and transverse migration in the dilute limit
shows that this principle provides through a simple dispersion measurement an evaluation
of migration characteristics that are directly connected to cell mechanical properties.
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I. INTRODUCTION

Blood is a typical example of a suspension of deformable particles whose flow is intimately
governed by the mechanics of red blood cells (RBCs), which make up about 45% of blood volume.
Their deformability is responsible for specific dynamic behaviors in flow that induce significant
differences in hydrodynamic properties compared to generic suspensions of rigid particles and
control the structure and rheology of the suspension in confined channel flow. For instance, RBCs,
vesicles, drops, or elastic capsules experience migration forces that usually drive them away from
walls toward the center of the channel [1–9]. This transverse migration, that exists even without
inertial effects, is a consequence of the shear induced deformations of particles that breaks the
fore-aft symmetry. Both the presence of walls [1,3,8,10] and curvature of the velocity profile [4,5,9]
contribute to the migration of deformable particles in channel flow. Similarly, hydrodynamic inter-
actions and pair-collisions between deformable particles lead to transverse shear-induced diffusion
[10–15]. Both phenomena lead to transverse motions of particles in the nonuniform, Poiseuille-like
velocity field of the channel flow which, at steady state leads to an inhomogeneous distribution
of particles or cells, with consequences on the effective rheology [16–19] but also on mixing and
dispersion [20], both in the transverse and axial directions.
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Indeed, a well-known phenomenon in thin channel or tube flow of solutions or suspensions is
the axial dispersion of molecules or particles due to the nonuniform velocity distribution. In the
case of molecular solutions or suspensions of Brownian particles for which thermal diffusion is
the major mechanism of exploration of streamlines by particles, this phenomenon is known as
Taylor-Aris dispersion [21,22]. In this context, an effective diffusion coefficient in the axial direction
can be derived by expressing the advection-diffusion equation in terms of small deviations from
cross-sectionally averaged quantities. It depends on the Peclet number Pe = aU/D that compares
advection and diffusion effects, where a is the tube radius, U the cross-section averaged flow
velocity, and D the diffusion constant. Using a similar approach, Griffiths and Stone derived the axial
diffusion properties for colloidal suspensions of particles that experience shear-induced diffusion in
addition to Brownian diffusion [23] and showed that the process becomes essentially nonlinear and
slower than pure Brownian-based Taylor-Aris dispersion.

A direct consequence of the axial dispersion of particles is a dispersion of their transit times
through a channel or channel network: Particles entering the channel at the same time, e.g., by
injecting a pulse at the inlet, may exit at very different times due to the spreading of the pulse.
This is a well-known limitation to the resolution of chromatographic techniques [24]. In blood
microcirculation, the axial dispersion of RBCs leads to a dispersion of transit times through
an organ, which may have an influence on oxygen release. This phenomenon was studied in a
pioneering study in vivo by Lipowsky [25] who showed that both the average transit time of a
pulse of fluorescently labeled RBCs and the dispersion of this pulse was strongly influenced by the
mechanical properties of RBCs. More specifically, artificially rigidified cells had significantly longer
and more dispersed transit times. While part of the dispersion in capillary networks is inherent to
the network’s complex structure in which multiple paths are possible between the inlet and outlet,
its dependence on cell rigidity suggests that axial dispersion in each individual capillary influences
the overall behavior.

In contrast with the Taylor-Aris dispersion or the axial dispersion of colloidal suspensions in
which the sole transverse motion mechanism is diffusive, whether it is Brownian or nonlinear, the
transport of deformable particles in tube or channel flow is strongly influenced by migration toward
the centerline, which tends to decrease the cross-sectional dispersion of cells over time, especially
in dilute suspensions. This convective effect decreases the axial dispersion rate as the centering of
cells takes place (see Fig. 1). As lateral migration increases with parameters such as deformability
or size of the particles [4,5,7], it is expected that cells having a faster lateral migration velocity in
tube flow will undergo less axial dispersion, in a manner similar to changes in transit times in more
complex networks [25].

In this work, we made an experimental study of the axial dispersion of pulses of RBCs in a
straight flat channel (2D Poiseuille flow) by varying mechanical parameters such as the deformabil-
ity of these cells through population selection by density gradient separation and the viscosity of the
suspending medium. For dilute suspensions, the dispersion rates are related to previously established
lateral migration laws of individual cells and an asymptotic theoretical model is proposed in which
the evolution of the pulse length is explicitly related to RBC migration parameters and channel
thickness. From this model we show that in the dilute limit a simple, macroscopic measurement
of the axial dispersion of a pulse can be used to derive microscopic migration coefficients and is a
marker of RBC deformability in a blood sample. Finally, we present results on the combined effect
of axial dispersion in straight channels and the role of diverging and converging bifurcations in a
simple channel network that provides insight on the mechanisms leading to the dispersion of transit
times in complex microvascular networks.

II. EXPERIMENTAL SETUP: THE MICROFLUIDIC COMMUTER

The experiment consists in generating pulses of a red blood cell suspension at the entrance of a
channel and studying their evolution along the channel. In practice, this setup is based on a standard
microfluidics chip whose function and control are detailed below, made of a slab of PDMS moulded
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FIG. 1. Schematic view of the mechanisms leading to longitudinal diffusion for a pulse of non-Brownian
particles in interactions with wall and with neighbors. The top panel shows the observed elongation of the pulse
at different positions xi in the no-shear plane xy while the bottom panel illustrates the underlying mechanism in
the plane of shear. Cells that are initially centered are the fastest ones at the front of the pulse (moving at velocity
u0) while those starting close to walls are the slowest ones and will constitute the tail of the distribution. As they
are displaced in the z direction due to transverse migration (yellow arrows) and possibly cell-cell interactions
(purple arrows), a complex evolution of the time-lag between the front and the back of the pulse takes place
along the channel until a stationary distribution of length X∞ is reached in the asymptotic regime. Note that
in the case of polydisperse suspensions, segregation (both transverse and axial) may take place due to these
dynamics.

on a SU8 template using standard soft lithography techniques and bonded to a glass slide after
plasma treatment.

The initial dispersion of a pulse is rather fast and of order the velocity difference between fast
RBCs at the center of the channel and slow ones near walls. However the long term evolution of
the dispersion rate is governed by the migration of RBCs across streamlines, from the walls to the
center line. As shown in Ref. [7], this migration is slow compared to axial velocities and the distance
required for RBC centering (in the ideal case of dilute suspensions) can be of order 1000 times the
channel thickness. A long channel is therefore needed to study the time evolution of a pulse. As a
consequence, tracking a single pulse along the channel while keeping a good local resolution is an
impossible task due to its rapid stretching and convection. We instead chose to generate periodic
pulses through a stable and repeatable process to study their profile at different axial positions along
the channel.

Usually, inclusions of a fluid inside another one (e.g., bubbles or drops) are produced by
microfluidic flow-focusing devices. The nonmiscibility of the two fluids and the existence of a
surface tension are the key ingredients that allow the spontaneous generation of well separated
and periodic inclusions. Here, the separation process between the suspension and the particle-free
fluid requires to actively control the alternation of pure suspending fluid and RBC suspension. In
practice, a direct control of pulse production through a flow focusing system or T-junction (as is
done for bubbles or drops) is not possible through direct flow rate control, due to the lag times
of flow-controlled microfluidics, and our attempts to control the experiment only through imposed
pressures at the inlets have revealed that stabilization is not easily achieved.

To retain the fast response times of pressure control, we opted for a mixed approach, where
the total flux of red blood cells in the microfluidic chip is fixed and imposed by a syringe pump
through a secondary channel while part of it is periodically redirected to the entrance of the main
channel thanks to pressure pulses imposed by a pressure controller. This solution as the advantage of

043102-3



LOSSERAND, COUPIER, AND PODGORSKI

FIG. 2. Working principle of the microfluidic commuter. At the bottom inlet, red blood cell suspension is
injected at a constant flow rate Q, while the pressure at the top inlet connected to a reservoir of suspending
medium is varied periodically. In panel (a), the pressure is high enough so that the suspending fluid enters into
the main channel. Lowering the pressure as in panel (b) let the red blood cells enter into the commuter, and
in particular in the main channel, this creating the forefront of the pulse. In panel (c) increasing back the inlet
pressure allows to end this pulse.

being simple in its design and manufacturing process, in contrast with more complex valve systems
[26,27].

More precisely, as sketched in Fig. 2, a fixed flux Q of RBC suspension is imposed at one inlet of
a H-shaped commuter. The other inlet is connected to a reservoir of suspending fluid whose pressure
is controlled. For low enough pressures, the RBC suspension is diverted into the main channel. For
larger pressures, it flows through the secondary (parallel) channel leading to a waste outlet, while
the suspending fluid enters the main channel, thus separating the previous pulse from the next one.

The pressures and flow rates are set such that the initial length of pulses is around 5 mm, with
maximal cell velocity of 1.5 mm s−1. This results in pulses of initial temporal length of a few
seconds, separated by intervals of around 30 s, as seen in Fig. 3 which illustrates the repeatability
of the pulse generation process, with fluctuations of pulse length smaller than 5%.

The main channel is a long serpentine channel of rectangular cross section 2w × 2h = 350×
33 µm (except for the data of Fig. 7 where 2h = 40 µm). The x coordinate corresponds to the
flow direction while the cross-section is defined by −w < y < w and −h < z < h. In practice, as
w � h there is almost no shear in the y direction and the flow is quasi-2D. We therefore assume
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FIG. 3. Sequence of temporal profiles of a series of pulses, right after the commuter.

there is no significant cell motion nor velocity variation in the y direction. The focal plane of
the bright field microscope is Oxy. The RBC velocities and concentrations are evaluated in the
−w/2 � y � w/2 area. At each x position along the main channel, 8 to 10 pulses are considered
to average out the fluctuations of pulses; for each of them successive pictures are taken at 30 fps
thanks to a monochrome camera mounted on a IX71 Olympus inverted microscope with a motorized
stage. A blue filter in the illumination beam (434 nm ± 17 nm) corresponding approximately to the
absorption peak of hemoglobin at 410 nm [28] is used to enhance the contrast. For each individual
picture, taken at time t , the mean volume fraction and the mean maximal velocity are computed on
the whole field of view (of length 470 µm in the x direction).

The local volume fraction of RBCs � is determined following the Beer-Lambert law of ab-
sorption, which is generally considered to be relevant in micrometric channels up to hematocrits
(RBC volume fraction) of around 20% [10,29,30]. The absorption coefficient was determined
by a calibration with images at low volume fraction, where a direct measurement can be made
by counting individual cells. The reference intensity, assumed to be that with no cells, is
taken by considering the minimal intensity among all pixels in the channel, which we checked
to be accurate enough in the considered range of volume fractions.

In addition, routines written in Python with the OpenCV library [31] determines the center of
mass of each cell. Thanks to an acquisition frequency of 54 fps, the displacement between two
frames of RBCs flowing at maximum at 1.5 mm/s can be determined by a tracking routine. We
denote by u0 the maximal velocity of the RBCs.

Blood samples are provided by the Établissement Français du Sang (EFS Rhône-Alpes) from
healthy donors. RBCs were separated by centrifugation after being washed three times in a solution
of phosphate-buffered saline (PBS tablet from Sigma). To prevent sedimentation of RBCs in chan-
nels, the RBCs were resuspended in a density matching PBS solution made of a 65/35 V/V mixture
of water and iodixanol solution (Optiprep from Axis-Shield) [7,32]. This suspending fluid has a den-
sity of 1.112 ± 0.001 g/ml, which almost prevents the sedimentation of the RBCs and a viscosity
η0 of 1.9 mPa s at 20◦C which is a little higher than plasma viscosity (1.54 mPa s at 25◦C [33]).

Density-fractionated RBCs were prepared by centrifugation in discontinuous density gradients
with Optiprep and PBS mixtures as described in Ref. [7], the four-layer gradient leading to the sepa-
ration of a top (light) fraction of RBCs of density 1.103 ± 0.003 g/ml, and a bottom (heavy) fraction
of density 1.123 ± 0.005 g/ml. As these two fractions represent only respectively 5% and 10% of
the total hematocrit, this separation confirms that the average density in the sample is 1.112 g/ml.

III. MODEL

The evolution of a pulse length X (x) along the channel (or equivalently its duration τ (x) at a
given coordinate x) is a consequence of the dispersion of RBC velocities in the nonuniform channel
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flow profile: As depicted in Fig. 1 the first cells of a given pulse reaching position x are those flowing
at maximum velocity, i.e., cells that have been at z = 0 in the middle plane of the channel from the
entrance. The tail of the pulse is made of the slowest cells, which are the ones responsible for the
increase of τ (x), that is those initially located close to the walls where velocity is minimum and then
slowly migrating toward the center line until all cells eventually reach the same terminal velocity
and τ (x) ceases to increase. In the absence of transverse migration of these cells, the increase of
pulse time duration �τ (x) = τ (x) − τ (0) would be a linear function of x of slope 1/�V , where
�V is the velocity difference between the fast and the slow cells. If slow cells experience a lateral
migration toward the center, then the growth of τ (x) [or X (x)] will be sublinear.

We have shown in Ref. [7] that in the semiconfined case considered here, the velocity of the
RBCs can be well approximated by the unperturbed flow velocity averaged over the cell extension.
More precisely, we consider R0 the effective radius of a cell defined by R0 = [3V/(4π )]1/3, where
V is the volume of a cell. For V = 90 µm3 [34], this leads to R0 = 2.8 µm. In our channel geometry
the longitudinal cell velocity ux(z) is then

ux(z) = 1

2R0

∫ z+R0

z−R0

v(Z )dZ, (1)

where v(Z ) is the (unperturbed) fluid velocity at position Z . Assuming a parabolic profile for the
quasi-2D flow, one obtains

ux(z) = u0

(
1 − 3z2

3h2 − R2
0

)
, (2)

which is a parabolic flow field in a channel of width 2h with negative slip length
√

h2 − R2
0/3 − h

and where u0 = v(0)(1 − R2
0/3h2) is the velocity of the centered cells. Note that in our experimental

cases the ratio R0/h is about 0.16 or lower, which leads to corrections on the velocity of 1–3% only
depending on the z position [Eq. (2)] compared to assuming that the RBC velocity is the unperturbed
flow velocity at the position of the RBC center, and thus a similar correction on subsequent results.
Nevertheless, we chose to keep this correction in the model for more generality.

Let us consider a slow cell of coordinates (xs, zs), entering the channel at (0, z0) with −h <

z0 < 0. Its trajectory is determined by the longitudinal velocity ux(zs) [Eq. (2)] and its transverse
velocity uz(zs). In Ref. [7], we showed that the transverse migration of a cell can be described by
the following scaling law:

uz = ξ
Rδ+1

0 γ̇ (zs)

(zs + h)δ
, (3)

where ξ is a dimensionless migration amplitude, δ a migration exponent (usually between 1 and 2),
and γ̇ = dv/dz = −2v(0)z/h2 = −6u0z/(3h2 − R2

0) is the local shear rate in the particle free fluid.
Equations (2) and (3), combined with initial conditions, contain in principle all the ingredients

required to predict the evolution of the pulse length and shape, at least in the dilute limit where
transverse migration is the sole mechanism of RBC motion across streamlines. As there is no general
analytical solution for zs(xz ) and X (x) to these equations, we first derive the asymptotic limit of pulse
length as x → ∞ and the behavior of X (x) in this limit.

A. Asymptotic pulse length

The time derivative of the pulse length X is dX/dt = u0 − ux(zs), where ux(zs) is the velocity of
the slowest cell. We can then write:

dX

dzs
= dX

dt

dt

dzs
= u0 − ux(zs)

uz(zs)
= − zs(zs + h)δ

2ξRδ+1
0

. (4)
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This yields the length of the pulse when the slowest cell has migrated from z0 to zs:

X (zs) = X0 + A(z0) + hδ+2
(
1 + zs

h

)δ+1[
1 − (δ + 1) zs

h

]
2ξRδ+1

0 (δ + 1)(δ + 2)
, (5)

where X0 is the initial pulse length and A(z0) is a constant that depends on the initial position z0 of
cells that are closest to the walls:

A(z0) = −hδ+2
(
1 + z0

h

)δ+1(
1 − (δ + 1) z0

h

)
2ξRδ+1

0 (δ + 1)(δ + 2)
. (6)

Note that A(z0) = 0 in the ideal case where z0 = −h (which is not possible due to the finite size
of cells). The asymptotic pulse length is obtained when the slowest cells reach the center (zs = 0)
and the corresponding pulse duration is simply τ∞ = X∞/u0:

X∞ = X0 + A(z0) + hδ+2

2ξRδ+1
0 (δ + 1)(δ + 2)

. (7)

Interestingly, Eq. (7) shows that in a sufficiently long channel and by a proper control of initial
conditions (z0, X0), it is in principle possible to relate the final pulse length X∞ to migration
parameters ξ and δ through a simple scaling law. Simply measuring the macroscopic parameter
X∞ in channels of different thicknesses h is therefore sufficient to derive microscopic parameters ξ

and δ that are intrinsic characteristics of the cell mechanical properties in confined flow.

B. Asymptotic behavior

For a channel with a finite length, for which the asymptotic pulse length cannot be sufficiently
approached before the exit, it is necessary to analyze the behavior of X (x) along the channel. As
no exact analytical solution for zs(x) and X (x) can be derived from Eqs. (2), (3), and (4), one can
look for the asymptotic behavior as zs → 0, i.e., for |z/h| � 1. In this limit, expanding the previous
equations at order 1 in z one gets

dX

dzs
� − 1

2ξ (R0/h)δ+1

zs

h
, (8)

dzs

dx
= uz

ux
� − 6ξRδ+1

0

hδ
(
3h2 − R2

0

) zs. (9)

Equation (9) yields the following form for zs(x):

zs(x) = z1 exp

[
− 6ξRδ+1

0

hδ
(
3h2 − R2

0

) (x − x1)

]
, (10)

where z1 is a transverse position of the slow cells in the channel at which the first-order approxima-
tions of Eqs. (8) and (9) start to be acceptable and x1 the corresponding axial coordinate. When the
tail of the pulse reaches position x, the pulse length X (x) is then approximately described by

dX

dx
= dX

dzs

dzs

dx
= 3z2

1(
3h2 − R2

0

) exp

[
−12ξRδ+1

0 (x − x1)

hδ
(
3h2 − R2

0

)
]

(11)

or

X (x) − X∞ = − z2
1hδ

4ξRδ+1
0

exp

[
−12ξRδ+1

0 (x − x1)

hδ
(
3h2 − R2

0

)
]
. (12)

Equations (11) and (12) show that the pulse length should converge to its asymptotic value
following an exponential law with a characteristic length scale L that does not depend on the initial
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positions z0 or z1 but only on RBC parameters and channel thickness:

L = hδ
(
3h2 − R2

0

)
12ξRδ+1

0

. (13)

Equation (13) yields a simple relation between the macroscopic dispersion phenomenon and mi-
croscopic parameters δ and ξ , the latter one being directly dependent on cell mechanical properties
as seen in our previous study on migration [7].

Note that in the dilute limit, which is always reached in a sufficiently long channel where a
directed force drives particles toward the centerline, the behavior of a pulse is not diffusive. This
contrasts with the Taylor-Aris dispersion where the underlying mechanism of lateral displacements
is Brownian diffusion and yields a x1/2 scaling for the pulse length.

In cases where the initial condition z0 is such that the condition |z/h| � 1 is not fully satisfied,
it may be useful to extend the asymptotic expansion to the next order. In that case (keeping order 2
in zs/h) one gets

dX

dzs
� − 1

2ξ (R0/h)δ+1

zs

h

(
1 + δ

zs

h

)
, (14)

dzs

dx
= uz

ux
� − 6ξRδ+1

0

hδ
(
3h2 − R2

0

) zs

(
1 − δ

zs

h

)
. (15)

Assuming that the approximation is valid from the entrance of the channel where zs(0) = z0, this
yields

zs(x) � hz0

δz0 + (h − z0)ex/2L
. (16)

And the pulse length is

X (x) � X0 + 6h2L(
3h2 − R2

0

)
δ2

{
δz0

h

(1 − e−x/2L )
(

δz0
h − 1

)
1 − δz0

h (1 − e−x/2L )

− ln

[
1 − δz0

h
(1 − e−x/2L )

]}
. (17)

C. Full form

More generally, for a given set of parameters (z0, ξ , δ), Eqs. (2) and (3) can be solved numerically
to recover the exact solution, and for each position x, the time ts(x) needed for the cell to reach
position x, defined as xs(ts) = x, can be determined. From it, the time lag �τ which is the difference
between the time needed by the slowest and fastest cells to reach x, respectively, can be derived:

�τ (x) = ts(x) − x

u0
. (18)

Note that for the sake of comparison with experiments, �τ is indeed the difference between the
pulse durations at position x and at the entrance: �τ = τ (x) − τ (0). These quantities are directly
measured in the experiment and can be converted to spatial length via X (x) = u0τ (x) and the
corresponding pulse elongation is

�X (x) = u0�τ (x) = u0ts(x) − x. (19)

To analyze experimental data using this model, an optimization procedure as a function of
the unknown parameters (z0, ξ , δ) was implemented. We showed in Ref. [7] that within such a
procedure the two parameters ξ and δ are strongly correlated and a continuum of (ξ, δ) pairs can
yield good agreement with a measured migration trajectory. However, an analysis run with channels
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of varying height showed that a satisfactory universal migration law is obtained by choosing δ = 1.3.
We stick to this choice in this study.

The optimization follows a differential evolution method [35] which is implemented using lmfit
library in Python [36]. The quality of the fit and the parameter values obtained by this optimization
method and by fitting with the asymptotic forms of Eqs. (12) and (17) are compared in the following,
these asymptotic forms having the advantage of allowing a simpler, direct fitting procedure.

IV. RESULTS AND DISCUSSION

A. General behavior

The experimental data consists, for each position x considered along the channel, in a measure-
ment of the temporal profile �(t, x) of the pulse flowing through position x. We take as a volume
fraction reference the maximum value of the hematocrit �p within the pulse.

As shown in Fig. 4, temporal profiles are stretched as the pulse travels along the channel and
we characterize the evolution of a pulse by measuring its temporal length τ (x). In practice, it is
taken as the time after which 80% of the cells have passed position x. This choice provides more
robust results, that are insensitive to outliers in the tail of pulses (see Supplemental Material [37]).
To remove the influence of the initial pulse length, we consider the increase in temporal length
�τ (x) = τ (x) − τ (0), where x = 0 corresponds the entrance of the main channel.

B. Effect of cell deformability

To establish a link between dispersion and individual cell dynamics, we consider in this section a
dilute limit with an initial peak concentration of around 0.1%, for which cell-cell interactions can
be neglected.

Red blood cells have a timelife of around 4 months. As they get older, cells become denser and
less deformable [38], which eventually leads to their elimination in the spleen [39]. Sorting the cells
by density amounts then to sort them by deformability, a generic notion that is indeed physically
related to several properties such as cytosol viscosity, membrane shear or bending elasticity [40,41].

Figure 5 shows the evolution of pulse length �X (x) = X (x) − X0 as a function of traveled
distance x, for three mean densities d of RBCs. As in Ref. [7], mean density d = 1.103 g/ml
corresponds to the lightest cells, having densities in the range 1.099–1.106 g/ml, while mean density
d = 1.123 g/ml corresponds to the heaviest cells, with densities in the range 1.118–1.128 g/ml.
Results labeled as d = 1.112 g/ml correspond to the whole, unsorted population of cells in the
blood sample.

As illustrated in Fig. 4, the pulse length grows as it travels along the channel. A faster growth
indicates a slower migration of the slowest cells, but the behavior of the �X (x) also depends on
the initial condition z0. A fit of the experimental curves with the full form (FF) of Eq. (19) and
the asymptotic forms of Eqs. (12) (AF) and (17) (AF2) with fixed δ = 1.3 yields the couples of
parameters (z0, ξ ) for FF and AF2 and (L, ξ ) for AF summarized in Table I. Note that a direct
measurement of z0 is not possible in the experiment: Here the optical axis is the z axis and a
direct observation along the y axis (the vertical direction in Fig. 2) is impossible due to the small
thickness of the main channel compared to its x and y dimensions. However the obtained z0 values
are physically consistent as explained in the following. Also note that the AF model does not need
z0 as explicit fitting parameter.

The fitted values of z0 show that in all cases cells are already quite far from channel walls (here
h = 16.5 µm) at the entrance of the main channel, as a result of their initial displacement in the
inlet channels where the pulse is created. Unsurprisingly, the more deformable (less dense) ones
that migrate faster are already the closest to the centerline at x = 0. This is indeed confirmed by the
fact that the exponential asymptotic law (AF) and the second-order asymptotic law (AF2) fit very
well with the experimental data and are almost superimposed with the full form (FF) modeling.
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FIG. 4. Temporal profiles of pulses for different x positions (from top to bottom, 0, 3, 7, 11, 15, 20, and
26 mm) and different initial peak hematocrits (Left: 0.1%; middle 1.1%; right 5%). Shaded areas correspond
to the first 80% of cells.

The relaxation distance L is in the range of several centimeters here, which is about 1000 times
the channel thickness. This is obviously much longer than the convergence length of the cell-free
layer (CFL) observed in other studies on more concentrated suspensions [42] where a balance
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FIG. 5. Evolution of pulse length for cells with different deformabilities, as assumed from their sorting by
mean density d (�: d = 1.103; •: d = 1.112; �: d = 1.123), in a channel of thickness 2h = 33 µm. Lines
show fits of the models with δ = 1.3 [colored line: Eq. (19) (FF); dashed line: Eq. (12) (AF); dotted line:
Eq. (17) (AF2). Note that FF, AF, and AF2 are almost superimposed].

between migration and shear-induced diffusion takes place. This comparison was discussed in our
previous study [7].

The tendency observed for the migration amplitude ξ and the relaxation distance L show that
lighter cells migrate faster and the corresponding pulse length stabilizes after a shorter distance
(about 20 mm versus nearly 50 mm for heavier cells). These differences are a strong marker of
dispersion in mechanical properties within a given sample, as also described for cells under simple
shear flow [43,44]. Note that, the values of ξ fitted with the full-form model (FF) exhibit much
more marked differences when varying RBC density than the asymptotic forms: The optimization
procedure of the FF model may be less selective on the (z0, ξ ) couple (i.e., a range of couples may
give equivalently satisfactorily results) while the experiment does not allow to check if the obtained
z0 values are correct. However, in the asymptotic forms, the characteristic length L is a more explicit
feature of the experimental curve and may therefore be more robust way of estimating ξ in addition
to being computationally easier to implement, as long as the asymptotic regime is reached.

Remarkably, the values yielded by all models for d = 1.103 g/ml are actually very close to
those obtained previously by directly measuring migration velocities [7], even though the blood

TABLE I. Fitted values of parameters when varying RBC mean density, for the full form optimization (FF)
and the first-order (AF) and second-order (AF2) asymptotic forms. For AF and AF2, ξ values (in italics) are
derived from the fitting parameter L. For the sake of comparison, X∞ was also extrapolated from the FF and
AF2 fits (italics). The results of the direct measurements of Ref. [7] are recalled.

FF AF AF2 Ref. [7]

d z0 ξ X∞ X∞ A L ξ z0 L ξ X∞ ξ

(g/ml) (µm) (10−3) (mm) (mm) (mm) (mm) (10−3) (µm) (mm) (10−3) (mm) (10−3)

1.103 −4.5 15.3 0.92 0.89 0.89 11.7 20.7 −4.6 14.3 16.9 0.90 14
1.112 −6 5.2 4.37 3.81 3.79 25.9 9.3 −6.4 34.5 7.0 3.95 11
1.123 −7.6 1.7 18.7 12.4 12.4 45.8 5.3 −8.5 75.1 3.2 14.1 6.5
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TABLE II. Fitted values of parameters when varying the viscosity of the suspending fluid, for the full form
optimization (FF) and the first-order (AF) and second-order (AF2) asymptotic forms (only the main parameters
of interest are shown).

FF AF AF2

η0 z0 ξ L ξ z0 ξ

(mPa s) (µm) (10−3) (mm) (10−3) (µm) (10−3)

1.9 −9.1 5.9 28.0 16.3 −10.2 10.1
5.8 −7.0 11.0 22.8 20.1 −7.4 14.5
8.1 −9.9 25.4 12.0 38.2 −10.5 34.6

sample was different. For higher cell densities, two features emerge: (i) there are slightly more
marked differences between the FF model and asymptotic models, which is likely due to higher
|z0| values, with the AF2 model obviously providing a better approximation, and (ii) ξ values are
lower than in direct measurements [7]. This reflects the fact that the dynamics of the back of the
pulse is governed by the slowest cells which, possibly after a short transient, are the ones having
the lowest transverse migration velocities. As the d = 1.123 g/ml sample covers a relatively large
range of densities (1.118–1.128 g/ml), some of the cells are significantly slower that the average.
Concerning the whole sample d = 1.112 g/ml, in the direct measurement of Ref. [7] the average
migration amplitude of the whole population has an intermediate value between light and heavy
cells. Here, we would expect the pulse dynamics to be governed by the slowest cells, which happen
to be the same as in the d = 1.123 g/ml subpopulation, and yield the same ξ value. While values are
closer than what they are in the direct measurements, there is still a significant difference. However,
the way the pulse length is experimentally defined (by considering the 80% of RBCs at the front of
the pulse) removes some of the slowest (and densest) cells from the whole population and explains
why the pulse length does not behave exactly as for the denser case d = 1.123 g/ml.

The deformation of cells under flow can also be monitored externally through the viscosity
η0 of the suspending fluid. The dynamics of RBCs draws in reality a complex diagram, even in

FIG. 6. Evolution of pulse length for cells in fluids of different viscosities η0 = 1.9 mPa s (•), η0 = 5.8
mPa s (�), and η0 = 8.1 mPa s (�), in a channel of thickness 2h = 40 µm. Lines show fits of the models with
δ = 1.3 [colored line: Eq. (19) (FF); dashed line: Eq. (12) (AF); dotted line: Eq. (17) (AF2)].
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unbounded shear flow, which depends on the shear stress η0γ̇ , where γ̇ is the shear rate, and on
the viscosity contrast λ between the inner and the outer fluid [43–48]. A very rough view is that
increasing the viscosity of the external fluid increases both the stress and the relative weight of
dissipation mechanisms outside and inside the cell, allowing a transition from solid-like, flipping
motion to droplet-like motion where the cell adopts a fixed shape relatively to the flow; the rotational
component of the imposed stress is then accommodated by inner fluid rotation instead of a rotation
of the whole cell. Because of this, an increase of the migration velocity with the viscosity of the
external fluid is expected, as demonstrated in Ref. [10] for RBCs in simple shear flow near a wall.

Here, we considered suspending fluids of different viscosities by adding dextran 100 kDa (Sigma)
in the suspension while varying the Optiprep volume fraction to adjust buoyancy. Instead of a
volume fraction of 35% in Optiprep, a volume fraction of 33% (resp. 31%) with additional dextran in
proportion 32.5 g/l (respectively, 50 g/l) lead to a viscosity at 20◦C of 5.8 (respectively, 8.1) mPa s
[19]. For the highest viscosity and given that the shear rate in the experiment is below 180 s−1, the
maximum shear stress is about 1.5 Pa. This is therefore still below the transition to tank-treading
[43,44] as was the case in our direct study on migration [7].

The evolution of pulse lengths are shown in Fig. 6 and parameter values fitted by FF, AF, and
AF2 models are gathered in Table II. The FF fitted value of ξ for η0 = 1.9 mPa s is close to that
obtained in the same experimental conditions in Table I for the whole sample (d = 1.112 g/ml), the
small difference being attributable to differences between different blood samples. Interestingly, a
quick look at the two curves for η0 = 5.8 and 8.1 mPa s in Fig. 6 does not allow to directly assess the
migration velocity of cells (and therefore their deformability) by simply comparing pulse lengths.
Only a model-based analysis taking into account the details of the rate of change of pulse length
allows to separate the intrinsic property (ξ ) from the influence of initial conditions (z0). These are
in the present case responsible for the η0 = 8.1 mPa s curve being initially above the other one due
to cells closer to the walls at the entrance of the channel and leading to initially faster dispersion,
while their asymptotic behavior is in-line with the expected relative values of the lift velocity: The
slope of the η0 = 8.1 mPa s curve becomes smaller than that of the η0 = 5.8 mPa s curve as cells
migrate much faster toward the centerline.

Note that in this series, the ratio |z0|/h is significantly bigger than in the series of Table I, which
leads to poorer performance of the AF model and bigger differences between the first-order (AF)
and second-order (AF2) asymptotic forms.

C. Effect of cell-cell interactions

Hydrodynamic collisions between cells lead to transverse shear-induced diffusion that could be
expected to slow-down the migration of cells toward the center. Figure 7 shows the evolution of
the dispersion for pulses of varying initial peak concentrations, �p = 0.1%, 1%, and 5%. Fitting
the experimental curves with the FF, AF, and AF2 models which assume no interactions between
cells can still be formally done to extract effective migration parameters, and yields the results of
Table III. Note that the dataset for �p = 0.1% is the same as the one labeled d = 1.112 g/ml in
Fig. 5.

The dilute suspension has a larger ξ as expected, but a quantitative interpretation of the smaller
value of ξ found for large volume fractions is delicate: As the pulse evolves and elongates, local
concentration decreases and one should eventually recover the dilute case regime. However, the
front of the pulse corresponds to cells that are concentrated around the centerline of the channel
where the shear rate is lower, and the concentration peak may therefore survive for some time before
actual dilution occurs. This may explain why for �p = 1% and 5% the evolution of the pulse length
is almost linear after x = 10 mm and does not show any sign of saturation over the whole channel
length. This suggests that shear-induced diffusion effects are significant as soon as �p � 1% and
that migration parameters cannot reliably be derived from such an experiment. A more elaborate
modeling would be needed in that case to include the effects of both transverse migration and
shear-induced diffusion. Indeed, the model we proposed here, which consists in deriving the pulse
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TABLE III. Fitted values of parameters when varying the peak hematocrit of the pulse, for the full form
optimization (FF) and the first-order (AF) and second-order (AF2) asymptotic forms (only the main parameters
of interest are shown).

FF AF AF2

� z0 ξ L ξ z0 ξ

(%) (µm) (10−3) (mm) (10−3) (µm) (10−3)

0.1 −6.0 5.2 25.9 9.3 −6.4 7
1 −7.2 2.2 59.0 4.1 −8.0 3.7
5 −8.6 2.0 46.4 5.2 −9.9 4.1

length from the ODEs governing the trajectory of the slowest cell, cannot simply be amended to
include diffusive effect. A different modeling approach would be needed in which PDEs for the full
concentration field need to be considered to model diffusive and convective (migration) fluxes.

D. Outlook on dispersion in channel networks

While the mechanisms discussed in this paper lead to a marked axial dispersion in a single
straight channel, the presence of bifurcations in a channel network is responsible for local structural
reorganization of the flowing suspension and new initial conditions after each bifurcations that
should contribute to this dispersion at the scale of the network. As a first step toward a better under-
standing of this complex question, we compared the axial dispersion in two different configurations:
A single straight channel and a branched network consisting in a succession of three diverging
bifurcations followed by three converging bifurcations which can be viewed as a very simplified
model of microvascular network, as depicted in Fig. 8. In both configurations, the individual channel
cross section is 2w × 2h = 30 × 25 µm2 and the distance between bifurcations of the network is
4 mm. As the mean flow velocity evolves in the branched network when going through bifurcations,

FIG. 7. Evolution of pulse length for cells with different initial peak concentrations (corresponding to the
three columns of Fig. 4); •: �p = 0.1%, �: �p = 1%, �: �p = 5%. Lines show fits of the models with δ = 1.3
[colored line: Eq. (19) (FF); dashed line: Eq. (12) (AF); dotted line: Eq. (17) (AF2)].
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FIG. 8. Comparison of dispersion between a straight channel and a branched network. The characteristic
length L of a pulse is plotted against longitudinal position x for both configurations. In the branched channel
(blue dots), a measuring section was selected right before diverging or converging bifurcation.

the comparison between the two configurations is based on pulse length �X = u0�τ , where u0 is
measured at each considered position.

Figure 8 shows the evolution of this length as a function of the longitudinal position x along
the straight channel or the branched network. It clearly shows that while diverging bifurcations have
little effect on the dispersion, converging bifurcations induce a dramatic increase of the dispersion in
the branched network, compared to the sole dispersion induced by velocity differences in a straight
channel.

An interpretation of this result is complicated here by the fact that shear is present in both
transverse directions y and z due to the nearly square cross section (resulting in the presence of
slow cells near all four lateral walls) while bifurcations mainly redistribute cells in the y direction.
Nevertheless, a qualitative interpretation of the asymmetric role played by both types of bifurcation
can be proposed through the scheme of Fig. 9 where the deformation of an initially very thin pulse
is sketched. When going through a diverging bifurcation, front particles that are on the centerline
upstream are close to the inner wall downstream of the bifurcation. As a consequences the fastest
particles become the slowest ones and this should lead, at least immediately at the entrance of the
downstream channels, to a reduction of the dispersion and a contraction of the pulse. Then dispersion
as discussed before takes place again, possibly enhanced by the fact that cells have been pushed back
to high-shear regions near walls. Depending on channel length between bifurcations, the contraction
of the pulse taking place immediately after each diverging bifurcation may significantly compensate
the enhanced axial dispersion due to the relocation of particles. In our case, this leads to a dispersion
that is very similar or only slightly bigger in the diverging part of the network compared to a straight
channel.

After a converging bifurcation, as a first approximation the particle distribution that spans over
the whole channel width upstream is squeezed over half the width of the downstream channel. As a
result, half of the slow particles are still close to a wall downstream while the other half are located
close to the center, with a distance that depends on their initial transverse position, and therefore
become fast particles. This redistribution of the particle cloud in a region where the average shear
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FIG. 9. Schematic of the behavior inside the pulse right after (a) a diverging bifurcation and (b) a
converging bifurcation. The initial pulse is represented by its front (yellow), intermediate (orange) and rear
(red) particles. Right after a diverging bifurcation (a), half of these particles split into the daughter branch;
notably, the front particle is now close to the inner wall and is gradually overtaken by the queue particles. Right
after a converging bifurcation (b), particles occupy half the downstream branch and the pulse experiences
higher shear rates on average.

rate is higher and the average velocity is lower induces a stronger dispersion per unit displacement
in the axial direction. This simple picture explains the dramatic increase of the pulse length after
each converging bifurcation in Fig. 8.

While this qualitative description of the reorganization of the suspension after both types of
bifurcations helps to understand the differences observed in Fig. 8, more data is obviously required
to reach a full, quantitative understanding of the involved mechanisms. The distance between each
bifurcation, therefore the configuration in which the pulse reaches them, is of course a key parameter
here. If RBC migration is fast compared to channel length (narrow channels, very deformable
cells with high ξ ), then one can imagine a steady regime in which all cells are centered before
the next bifurcation. In such a situation, pulse length should quickly reach an asymptotic value
even in a network with bifurcations. In realistic blood micro-circulatory networks however, the
high occurrence of bifurcations makes it necessary to take into account the transient distribution of
cells [49].

V. CONCLUSION

This work reveals that the axial dispersion of red blood cells in channel flow is strongly related
to their mechanical properties that control their transverse displacements. In dilute suspensions,
our experiments and theoretical modeling show that the axial dispersion dynamics can be directly
derived from migration dynamics toward the center of the channel, which is assumed to follow a
previously established scaling law. As a consequence a higher cell deformability (or equivalently a
higher viscosity of the suspending fluid) decreases the axial dispersion.

Conversely, this general principle and the techniques presented here reveal that with controlled
initial conditions, a simple macroscopic measurement of pulse length can be used to easily derive
the microscopic migration velocity parameter of a blood sample, which is a direct signature of RBC
mechanical properties. Interestingly, this axial dispersion measurement principle, which requires
relatively light equipment and much less image and data processing than direct measurements opens
up alternative ways to monitor the deformability of RBCs or other cell populations in healthy and
pathological situations, e.g., for diagnostic purposes.

Although we observed some variations of the migration parameters obtained in different exper-
iments (pulse dispersion versus direct migration measurements) or using different fitting models,
one could certainly consider an improved experimental setup in which z0 is imposed and the main
channel is long enough to allow the pulse to approach its asymptotic length X∞. This would reduce
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the number of fitting parameters and decrease the discrepancies between different methods and
models as well as allow to use the simpler asymptotic form of the pulse dispersion model.

Our study of axial dispersion in straight channels represents a first step in the quantitative
understanding of hemodynamics in microvascular networks, where the dispersion of RBC transit
times, a critical factor in oxygen exchange for instance, is also obviously linked to network topology
and bifurcations. Our first study of the axial dispersion in a simple network highlights the starkly
different influence of diverging and converging bifurcation and shows a dramatically enhanced
dispersion after converging bifurcations. While light is usually shed on the role of diverging
bifurcations as they are the locus of uneven distribution in cells within downstream branches, this
emphasizes the central role that could be played by the diverging ones regarding the dispersion of
the transit time of cells and therefore of the oxygen release within one organ. The contribution of
both types of bifurcations remains to be explored through a more systematic study were transit times
after cell reorganization would be varied relatively to typical dispersion times.
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